The Expert System Anachronism in the Data Science and AI Divergence

Although the data science and big data buzzwords have been bandied about for years now, and although artificial intelligence has been talked about for decades, the two fields are irrevocably inter-related and interdependent.

For one thing, the wide interest in data science started just as we were beginning to leverage distribute data storage and computation technologies – which allowed companies to “scale out” storage and computation, rather than “scale up” computation. Companies who could therefore buy numerous run-of-the-mill computers (rather than extremely expensive, high end computers, in smaller numbers) could potentially leverage their data collection activities to be useful to the enterprise.

Let’s not forget, though, that the point of such exercises was to actually get some business value at the end of such an exercise. There’s virtually no business case for collecting huge amounts of data and storing them (with or without structure), if we don’t have a plan to somehow utilize that data for taking business decisions better, or to somehow impact the business or customers positively. IT managers across industries have therefore struggled to make sense of the big data space, and how much to invest, what to invest in, and how to make sense of it all.

Technology companies are only too happy to sell companies the latest and greatest data science and data management frameworks and solutions, but how can companies actually use these solutions and tools to make a difference to their business? This challenge for executives isn’t going away with the advent of AI.

Artificial Intelligence (AI) has a long and hoary history, and has been the subject of debate, discussion and chronicle over several decades. Geoff Hinton, the AI pioneer, has a pretty comprehensive description of various historical aspects of AI here. Starting from Geoff Hinton’s research, pioneering research in recent years by Yann Le Cun, Andrej Karpathy and others has enabled AI to be considered seriously by organizations as a force multiplier, just as they considered data science a force multiplier for decision making activities. The focus of all these researchers are on general purpose machine intelligence, specifically neural networks. While the “deep learning” buzzword has caught on of late, this is fundamentally no different from a complex neural network and what it can do.

That said, AI in the form of deep learning differs vastly in capability from the algorithms data scientists and data mining engineers have used for more than a decade, now. By adding many layers, and by constructing complex topologies in these neural networks, and by iteratively training them on large amounts of data, we’ve progressed along multiple quantitative axes (complexity, number of layers, amount of training data, etc) in the AI world, to get not merely quantitative, but qualitatively better in terms of AI performance. Recent studies at Google show that image captioning, often considered a hard problem for AI, is now at near-human levels of accuracy. Microsoft famously announced that their speech-to-text and translation engines stand improved by an order of magnitude, because of the use of these techniques.

It is this vastly improved capability of AI, and the elimination of the human (present forever in the data science activity loop) from even the analysis and design of these neural networks (generative adversarial networks being a case in point), that makes the divergence between Data Science and AI very vivid and distinct. AI seems to be headed in the direction of general intelligence, whereas data science approaches and methods constituted human-in-loop approaches to making sense of the data. The key value addition of the human in this data science context was “domain” – and I have extensively discussed the importance of domain in data science in an earlier post – but this too, has increasingly become supplanted by efficient AI, provided that the data collection process for training data, and the training and topological aspects of the networks (known as hyper parameters) are well defined enough. This supplanting of the human domain perspective, by machine-learned domain features that matter, is precisely what will enable AI to develop and become a key force to reckon with, in industry.

Therefore I venture that the “anachronism” in the title of this post, is the domain-based model of systems, or intelligent systems, called the Expert System. Expert system design is an old problem that probably had its heyday and apparently disappeared into the mist of technological obsolescence – and it is this kind of expert system design problem that AI methods will be so good at solving, to the point that they can replace humans in key tasks, and become a true general intelligence. Expert systems were how the earliest AI researchers imagined machine intelligence to be useful to humanity. However, their understanding was limited to rule-based expert systems. While the overall idea of the expert system is still relevant in many domains – so much so that in a sense, we have expert systems all around us – it is undeniable that the advent of AI will enable expert systems to develop and evolve once again, but without the rule-based approaches we have seen in the past, and with inductive learning as is apparent from deep learning and machine learning methods.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s